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Motivation

AIRS has given us 12+ years of high quality
Top-Of-Atmosphere radiance data

The high resolution AIRS channels allow us to probe different
regions of the atmosphere (eg surface, strat T(z), trop T(z),
trop WV(z), UT WV(z), stratospheric ozone)

Climate studies with AIRS data now feasible eg trace gas
rates, T(z) and WV(z) rates

Accurate scattering models allow us to compare AIRS
observational data with GCM model fields; first moment
(biases) and second moment (standard deviations) give
primary indications of GCM accuracy

Higher PDF moments (third = skewness, fourth = kurtosis)
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PDF Moments

Mean, StdDev, Skewness, Kurtosis are the 1st,2nd,3rd,4th
moments of the (normalized) PDF

< x >= µ =
∫

p(x)xdx

σ2 =
∫

p(x)(x − µ)2dx

S = 1
σ3

∫
p(x)(x − µ)3dx

K = 1
σ4

∫
p(x)(x − µ)4dx

Gaussian : skewness = 0, kurtosis = 3
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PDF Moments

Sharply peaked distribution (less in the tails) : Kurtosis > 3
Wider distribution (more in the tails) : Kurtosis < 3
"More stuff on the left" or "tail extending to right : Skewness > 0
"More stuff on the right" or "tail extending to left : Skewness < 0
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Previous work on atmospheric/ocean data

Climate models "tuned" to reproduce mean,std dev (first,
second moments)

Use stats from "microphysical" locations (eg over multiple
gridboxes) to look for "macroscopic" relationship

Analyzing eg SST, sea level heights, 300 mb vorticity shows
that

K ≥ 3/2S2 − r
power law behavior in tails pdf (x) = x−α for large x

Can we model this?
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Previous work on atmospheric/ocean data : Examples

atmospheric/ocean data eg SST, sea level height, 300 mb vorticity
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Advances in stochastic modelling

YES : Take dynamics (forcings, linear terms, nonlinear terms)
equations and separate out into slow and fast scales; the
nonlinear interaction of fast scales leads to a SDE

Multiplicative noise in stochastically forced models can be shown
to reproduce non-Gaussian statistics and power law behavior in
PDF tails

dx
dt
= a(x(t))+ b(x(t))η(t)

where a = deterministic slow processes, while bη represents state
dependent multiplicative noise [as opposed to state independent
additive noise a(x(t))+ η(t)]; η(t) is Gaussian white noise

Time dependent probability distribution function can be derived
from SDE, from which the K ≥ 3

2S2 + B relationship and power law
tails pdf (x) = x−α for large x can be derived
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Applications to AIRS data

Radiative transfer for any AIRS channel is a convolution over
multidimensional phase space (includes T (z),WV(z), other
trace gases, surface temp, clouds etc)

PDFS are extremely non-Gaussian, evidence of deviations from
Gaussians in the tails (cold tail = clouds)

Have shown our SARTA TwoSlab scatter code + ECMWF model
fields produce simulations that agree quite well with more
sophisticated MRO cloud simulators/DISORT scattering code

How do the higher order obs/cal moments compare : Do they
show K ≥ 3/2S2 − r?
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Nighttime Ocean Scenes BT1231 cm−1

Example : March 11, 2011 (2.9 million observations)
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Nighttime Scenes 2 channels

Example : 10 years of AIRS data
CLEAR sky PDFs (blue) and ALLsky PDFs (red) for 2 channnels
The clear sky PDFs are closer (though not exactly) to Gaussian
while the allsky PDFs have tails due to clouds

1231 cm−1 (surface/window) 1420 cm−1 UT Humidity
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AIRS data and SARTA calcs

CLEAR SKY

can "filter" AIRS data for clear scenes, reducing entire daily
observational data set by almost factor of 100

colocate ERA geophysical, ran off SARTA clear

collect 10 year stats into 4◦bins, separated by day/night (DN),
land/ocean (LO) and season (DJF/MAM/JJA/SON)

ALLSKY

AIRS nadir tracks (index 45,46) 10 year record, over all
geographical regions (approximately 100 million data points)

colocate ERA geophysical and cloud fields, ran off SARTA
scatter (TwoSlab)

collect 10 year stats into 4◦bins, separated by day/night (DN),
land/ocean (LO) and season (DJF/MAM/JJA/SON)
(approximately 6000 points per tropical bin)
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Summer AllSky : Mean Obs/Cal for 1231 cm−1

Longitude [deg]

L
a

ti
tu

d
e

 [
d

e
g

]

MEAN OBS

 

 

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

230

240

250

260

270

280

290

300

Longitude [deg]
L

a
ti
tu

d
e

 [
d

e
g

]

MEAN CAL

 

 

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

230

240

250

260

270

280

290

300

OBS CAL



13

Overview Data Conclusions

Summer AllSky : StdDev Obs/Cal for 1231 cm−1
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Summer AllSky : Skew Obs/Cal for 1231 cm−1
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Summer AllSky : Kurt Obs/Cal for 1231 cm−1
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AllSky Summer Kurt vs Skew for 1231 cm−1
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AllSky Kurt vs Skew for different channels

K ≥ 3/2S2 − r

coeff of S2 (OBS) coeff of S2 (CAL)
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Clear Sky Kurt vs Skew for different channels
ALL SEASONS (L) Obs and (R) Cal

OD = ocean day; expect K ≥ 3/2S2−r

coeff of S2 (OBS) coeff of S2 (CAL)
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Clear Sky Kurt vs Skew for different channels
WINTER Obs vs Cal

OD/ON = ocean day/ocean night
LD/LN = land day/land night
expect K ≥ 3/2S2 − r

coeff of S2 (OBS) coeff of S2 (CAL)
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Conclusions

In general channels we examined do show evidence of
stochastic forcing

K ≥ 3/2S2 − r
power law behavior in tails pdf (x) = x−α for large x

High altitude T (z) channels much quieter, except daytime
over land?

AIRS measurements include stemp, temp(z), WV(z), clouds
can we understand the multi-dimentional behaviour in terms of
these 1D results?
Should we bin the obs in terms of BT1231 eg ≥ 300 K
convection, ≥ 290 K stratus, ≥ 270 K altostratus, ≤ 270 K
cirrus and ≤ 230 K DCC??
allsky data has 1.3S2 ≤ K ≤ 1.5S2; compare to allsky calcs (NWP
models) which show 1.5S2 ≤ K ≤ 1.7S2

Conversely clear sky obs/cal data has 1.4S2 ≤ K ≤ 1.8S2

Stochastic theory material : preprints available on P. Sura’s website
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